Qualité Professionnelle à votre portée !
Ces exercices sont disponibles en formats PDF et LaTeX haute résolution. Contactez-nous pour les acheter.
Exercices sur les Puissances
1ère Année Collège
Calculer :
- a) \( 3^2 \times 5^2 \)
- b) \( (-0,25)^2 \)
- c) \( [(-5)^2]^2 \)
- d) \( (-2254,326)^1 \)
- e) \( -(-(-(-2)^2)^2) \)
Remplacez n par le nombre approprié :
- a) \( (7^2)^n = 7^{12} \)
- b) \( (-5)^n \times (-5)^3 = (-5)^{11} \)
- c) \( \frac{2,5^4}{2,5} = 2,5^{4-n} \)
Écrire sous la forme d’une seule puissance :
- a) \( A = a^2 \times b \times a^3 \times b^4 \)
- b) \( B = (a^2)^3 \times b^2 \times (a \times b)^3 \times (b^2)^2 \)
- c) \( C = \frac{a^2 \times b^3 \times a}{(a \times b)^3} \)
On pose \( a \times b \times c = -1 \). Montrer que :
- a) \( a^2 \times b \times c = -a \)
- b) \( a^2 \times b^2 \times c^2 = 1 \)
- c) \( a^3 \times b^3 \times c^3 = -1 \)
Exprimer sous la forme d’une seule puissance :
- a) \( (10^4)^5 \)
- b) \( 2^7 \times 5^7 \)
- c) \( 10^8 \times 10^6 \)
- d) \( \frac{10000}{100} \)
- e) \( \frac{5^{12} \times 4^{12}}{2^{12}} \)
Corrigés des exercices
a) \( (3 \times 5)^2 = 15^2 = 225 \)
b) \( (-0,25) \times (-0,25) = 0,0625 \)
c) \( (25)^2 = 625 \)
d) \( -2254,326 \)
e) \( -(-(-(4))^2) = -(-(-16)) = -(16) = -16 \)
a) \( 2 \times n = 12 \implies n = 6 \)
b) \( n + 3 = 11 \implies n = 8 \)
c) \( \frac{2,5^4}{2,5^1} = 2,5^{4-1} \implies n = 1 \)
a) \( A = a^{2+3} \times b^{1+4} = a^5 b^5 = (ab)^5 \)
b) \( B = a^6 \times b^2 \times a^3 \times b^3 \times b^4 = a^{6+3} \times b^{2+3+4} = a^9 b^9 = (ab)^9 \)
c) \( C = \frac{a^3 b^3}{a^3 b^3} = 1 \)
a) \( a^2 \times b \times c = a \times (a \times b \times c) = a \times (-1) = -a \)
b) \( a^2 \times b^2 \times c^2 = (a \times b \times c)^2 = (-1)^2 = 1 \)
c) \( a^3 \times b^3 \times c^3 = (a \times b \times c)^3 = (-1)^3 = -1 \)
a) \( 10^{4 \times 5} = 10^{20} \)
b) \( (2 \times 5)^7 = 10^7 \)
c) \( 10^{8+6} = 10^{14} \)
d) \( \frac{10^4}{10^2} = 10^{4-2} = 10^2 \)
e) \( \frac{(5 \times 4)^{12}}{2^{12}} = \frac{20^{12}}{2^{12}} = (\frac{20}{2})^{12} = 10^{12} \)